Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.090
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38252321

RESUMO

Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene expression. We further describe the cricket's circadian pacemaker. Ample anatomical manipulations support the location of a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcriptional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.


Assuntos
Críquete , Gryllidae , Neuropeptídeos , Animais , Ritmo Circadiano/fisiologia , Locomoção , Neuropeptídeos/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo
2.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36896963

RESUMO

Cell fate and growth require one-carbon units for the biosynthesis of nucleotides, methylation reactions and redox homeostasis, provided by one-carbon metabolism. Consistently, defects in one-carbon metabolism lead to severe developmental defects, such as neural tube defects. However, the role of this pathway during brain development and in neural stem cell regulation is poorly understood. To better understand the role of one carbon metabolism we focused on the enzyme Serine hydroxymethyl transferase (Shmt), a key factor in the one-carbon cycle, during Drosophila brain development. We show that, although loss of Shmt does not cause obvious defects in the central brain, it leads to severe phenotypes in the optic lobe. The shmt mutants have smaller optic lobe neuroepithelia, partly justified by increased apoptosis. In addition, shmt mutant neuroepithelia have morphological defects, failing to form a lamina furrow, which likely explains the observed absence of lamina neurons. These findings show that one-carbon metabolism is crucial for the normal development of neuroepithelia, and consequently for the generation of neural progenitor cells and neurons. These results propose a mechanistic role for one-carbon during brain development.


Assuntos
Drosophila , Células-Tronco Neurais , Animais , Drosophila/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Carbono , Metiltransferases/metabolismo , Serina/metabolismo , Lobo Óptico de Animais não Mamíferos
3.
Science ; 378(6626): eadd1884, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36480601

RESUMO

The large diversity of cell types in nervous systems presents a challenge in identifying the genetic mechanisms that encode it. Here, we report that nearly 200 distinct neurons in the Drosophila visual system can each be defined by unique combinations of on average 10 continuously expressed transcription factors. We show that targeted modifications of this terminal selector code induce predictable conversions of neuronal fates that appear morphologically and transcriptionally complete. Cis-regulatory analysis of open chromatin links one of these genes to an upstream patterning factor that specifies neuronal fates in stem cells. Experimentally validated network models describe the synergistic regulation of downstream effectors by terminal selectors and ecdysone signaling during brain wiring. Our results provide a generalizable framework of how specific fates are implemented in postmitotic neurons.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Células-Tronco Neurais , Neurogênese , Neurônios , Lobo Óptico de Animais não Mamíferos , Fatores de Transcrição , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Lobo Óptico de Animais não Mamíferos/metabolismo
4.
Proc Biol Sci ; 289(1981): 20220812, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975436

RESUMO

When an animal rotates (whether it is an arthropod, a fish, a bird or a human) a drift of the visual panorama occurs over its retina, termed optic flow. The image is stabilized by compensatory behaviours (driven by the movement of the eyes, head or the whole body depending on the animal) collectively termed optomotor responses. The dipteran lobula plate has been consistently linked with optic flow processing and the control of optomotor responses. Crabs have a neuropil similarly located and interconnected in the optic lobes, therefore referred to as a lobula plate too. Here we show that the crabs' lobula plate is required for normal optomotor responses since the response was lost or severely impaired in animals whose lobula plate had been lesioned. The effect was behaviour-specific, since avoidance responses to approaching visual stimuli were not affected. Crabs require simpler optic flow processing than flies (because they move slower and in two-dimensional instead of three-dimensional space), consequently their lobula plates are relatively smaller. Nonetheless, they perform the same essential role in the visual control of behaviour. Our findings add a fundamental piece to the current debate on the evolutionary relationship between the lobula plates of insects and crustaceans.


Assuntos
Braquiúros , Dípteros , Fluxo Óptico , Animais , Braquiúros/fisiologia , Humanos , Neurópilo/fisiologia , Lobo Óptico de Animais não Mamíferos , Vias Visuais/fisiologia
5.
J Comp Neurol ; 530(13): 2304-2314, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35513351

RESUMO

Social insects are instructive models for understanding the association between investment in brain size and behavioral variability because they show a relatively simple nervous system associated with a large set of complex behaviors. In the jataí stingless bee (Tetragonisca angustula), division of labor relies both on age and body size differences among workers. When young, both minors and soldiers engage in intranidal tasks and move to extranidal tasks as they age. Minors switch to foraging activities, while soldiers take over defensive roles. Nest defense performed by soldiers includes two different tasks: (1) hovering around the nest entrance for the detection and interception of heterospecific bees (a task relying mostly on vision) and (2) standing at the nest entrance tube for inspection of returning foragers and discrimination against conspecific non-nestmates based on olfactory cues. Here, using different-sized individuals (minors and soldiers) as well as same-sized individuals (hovering and standing soldiers) performing distinct tasks, we investigated the effects of both morphological and behavioral variability on brain size. We found a negative allometric growth between brain size and body size across jataí workers, meaning that minors had relatively larger brains than soldiers. Between soldier types, we found that hovering soldiers had larger brain compartments related to visual processing (the optic lobes) and learning (the mushroom bodies). Brain size differences between jataí soldiers thus correspond to behavioral specialization in defense (i.e., vision for hovering soldiers) and illustrate a functional neuroplasticity underpinning division of labor.


Assuntos
Comportamento de Nidação , Comportamento Social , Animais , Abelhas , Corpos Pedunculados , Lobo Óptico de Animais não Mamíferos , Tamanho do Órgão
6.
Cold Spring Harb Protoc ; 2022(7): Pdb.prot107889, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35641091

RESUMO

In this protocol, we outline procedures to mount the fly and to open up the head cuticle to expose the optic lobes for in vivo imaging. The fly is first inserted into a custom-made fly chamber in which the fly's head is stabilized on a piece of aluminum foil. Once the fly is mounted in the chamber, its head cuticle is removed, exposing the optic lobe for recording. The brain tissues (above the foil), including the optic lobes, should be bathed in fly saline. Meanwhile, the eyes (below the foil) are kept dry to receive light stimuli during the recording. A considerable level of expertise and hand dexterity is required to handle a small animal such as a fly, especially when opening its head capsule without damaging the brain tissue. This expertise should be gained through mindful repetition of the protocol. With appropriate preparation and skills, the success rate for this procedure can be >95%. Using this protocol, it is possible to record ultraviolet (UV)-sensing photoreceptors, which have long visual fibers that terminate at the medulla (the second optic neuropil). Depending on the visual neurons of interest, some modifications to fly mounting might be needed.


Assuntos
Encéfalo , Lobo Óptico de Animais não Mamíferos , Animais , Encéfalo/diagnóstico por imagem , Neurônios , Lobo Óptico de Animais não Mamíferos/fisiologia
7.
Nature ; 604(7905): 316-322, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388222

RESUMO

The brain consists of thousands of neuronal types that are generated by stem cells producing different neuronal types as they age. In Drosophila, this temporal patterning is driven by the successive expression of temporal transcription factors (tTFs)1-6. Here we used single-cell mRNA sequencing to identify the complete series of tTFs that specify most Drosophila optic lobe neurons. We verify that tTFs regulate the progression of the series by activating the next tTF(s) and repressing the previous one(s), and also identify more complex mechanisms of regulation. Moreover, we establish the temporal window of origin and birth order of each neuronal type in the medulla and provide evidence that these tTFs are sufficient to explain the generation of all of the neuronal diversity in this brain region. Finally, we describe the first steps of neuronal differentiation and show that these steps are conserved in humans. We find that terminal differentiation genes, such as neurotransmitter-related genes, are present as transcripts, but not as proteins, in immature larval neurons. This comprehensive analysis of a temporal series of tTFs in the optic lobe offers mechanistic insights into how tTF series are regulated, and how they can lead to the generation of a complete set of neurons.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Lobo Óptico de Animais não Mamíferos , Fatores de Transcrição , Visão Ocular , Percepção Visual , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/metabolismo
8.
J Comp Neurol ; 530(10): 1533-1550, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985823

RESUMO

The visual neuropils (lamina, medulla, and lobula complex) of malacostracan crustaceans and hexapods have many organizational principles, cell types, and functional properties in common. Information about the cellular elements that compose the crustacean lobula is scarce especially when focusing on small columnar cells. Semiterrestrial crabs possess a highly developed visual system and display conspicuous visually guided behaviors. In particular, Neohelice granulata has been previously used to describe the cellular components of the first two optic neuropils using Golgi impregnation technique. Here, we present a comprehensive description of individual elements composing the third optic neuropil, the lobula, of that same species. We characterized a wide variety of elements (140 types) including input terminals and lobula columnar, centrifugal, and input columnar elements. Results reveal a very dense and complex neuropil. We found a frequently impregnated input element (suggesting a supernumerary cartridge representation) that arborizes in the third layer of the lobula and that presents four variants each with ramifications organized following one of the four cardinal axes suggesting a role in directional processing. We also describe input elements with two neurites branching in the third layer, probably connecting with the medulla and lobula plate. These facts suggest that this layer is involved in the directional motion detection pathway in crabs. We analyze and discuss our findings considering the similarities and differences found between the layered organization and components of this crustacean lobula and the lobula of insects.


Assuntos
Braquiúros , Animais , Bulbo , Neurônios/fisiologia , Neurópilo/fisiologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Vias Visuais/fisiologia
9.
J Comp Neurol ; 530(9): 1321-1340, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34802154

RESUMO

The neuropeptide pigment-dispersing factor (PDF) plays a prominent role in the circadian clock of many insects including honey bees. In the honey bee brain, PDF is expressed in about 15 clock neurons per hemisphere that lie between the central brain and the optic lobes. As in other insects, the bee PDF neurons form wide arborizations in the brain, but certain differences are evident. For example, they arborize only sparsely in the accessory medulla (AME), which serves as important communication center of the circadian clock in cockroaches and flies. Furthermore, all bee PDF neurons cluster together, which makes it impossible to distinguish individual projections. Here, we investigated the developing bee PDF network and found that the first three PDF neurons arise in the third larval instar and form a dense network of varicose fibers at the base of the developing medulla that strongly resembles the AME of hemimetabolous insects. In addition, they send faint fibers toward the lateral superior protocerebrum. In last larval instar, PDF cells with larger somata appear and send fibers toward the distal medulla and the medial protocerebrum. In the dorsal part of the medulla serpentine layer, a small PDF knot evolves from which PDF fibers extend ventrally. This knot disappears during metamorphosis and the varicose arborizations in the putative AME become fainter. Instead, a new strongly stained PDF fiber hub appears in front of the lobula. Simultaneously, the number of PDF neurons increases and the PDF neuronal network in the brain gets continuously more complex.


Assuntos
Relógios Circadianos , Neuropeptídeos , Animais , Abelhas , Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Insetos/metabolismo , Larva/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Lobo Óptico de Animais não Mamíferos/fisiologia
10.
J Comp Neurol ; 530(2): 518-536, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34338325

RESUMO

The ability of locusts to detect looming stimuli and avoid collisions or predators depends on a neuronal circuit in the locust's optic lobe. Although comprehensively studied for over three decades, there are still major questions about the computational steps of this circuit. We used fourth instar larvae of Locusta migratoria to describe the connection between the lobula giant movement detector 1 (LGMD1) neuron in the lobula complex and the upstream neuropil, the medulla. Serial block-face scanning electron microscopy (SBEM) was used to characterize the morphology of the connecting neurons termed trans-medullary afferent (TmA) neurons and their synaptic connectivity. This enabled us to trace neurons over several hundred micrometers between the medulla and the lobula complex while identifying their synapses. We traced two different TmA neurons, each from a different individual, from their synapses with the LGMD in the lobula complex up into the medulla and describe their synaptic relationships. There is not a simple downstream transmission of the signal from a lamina neuron onto these TmA neurons; there is also a feedback loop in place with TmA neurons making outputs as well as receiving inputs. More than one type of neuron shapes the signal of the TmA neurons in the medulla. We found both columnar and trans-columnar neurons connected with the traced TmA neurons in the medulla. These findings indicate that there are computational steps in the medulla that have not been included in models of the neuronal pathway for looming detection.


Assuntos
Gafanhotos/fisiologia , Bulbo/fisiologia , Microscopia Eletrônica de Varredura , Neurônios Aferentes/fisiologia , Neurônios/fisiologia , Vias Visuais/fisiologia , Animais , Retroalimentação , Larva , Percepção de Movimento/fisiologia , Lobo Óptico de Animais não Mamíferos
11.
Curr Biol ; 31(14): R909-R912, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34314720

RESUMO

Colour vision involves colour-opponent cells, which are excited and inhibited by different wavelengths. Synaptic interconnections between Drosophila Dm8 cells are required for forming spatio-chromatic receptive fields with a center and surround of opposing polarity which can invert, depending on the stimulus.


Assuntos
Percepção de Cores , Visão de Cores , Animais , Cor , Lobo Óptico de Animais não Mamíferos
12.
J Comp Neurol ; 529(18): 3882-3892, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34313343

RESUMO

Cataglyphis desert ants are charismatic central place foragers. After long-ranging foraging trips, individual workers navigate back to their nest relying mostly on visual cues. The reproductive caste faces other orientation challenges, i.e. mate finding and colony foundation. Here we compare brain structures involved in spatial orientation of Cataglyphis nodus males, gynes, and foragers by quantifying relative neuropil volumes associated with two visual pathways, and numbers and volumes of antennal lobe (AL) olfactory glomeruli. Furthermore, we determined absolute numbers of synaptic complexes in visual and olfactory regions of the mushroom bodies (MB) and a major relay station of the sky-compass pathway to the central complex (CX). Both female castes possess enlarged brain centers for sensory integration, learning, and memory, reflected in voluminous MBs containing about twice the numbers of synaptic complexes compared with males. Overall, male brains are smaller compared with both female castes, but the relative volumes of the optic lobes and CX are enlarged indicating the importance of visual guidance during innate behaviors. Male ALs contain greatly enlarged glomeruli, presumably involved in sex-pheromone detection. Adaptations at both the neuropil and synaptic levels clearly reflect differences in sex-specific and caste-specific demands for sensory processing and behavioral plasticity underlying spatial orientation.


Assuntos
Adaptação Fisiológica , Formigas , Encéfalo/fisiologia , Corpos Pedunculados/fisiologia , Orientação Espacial , Percepção Visual , Animais , Feminino , Aprendizagem , Masculino , Bulbo Olfatório , Lobo Óptico de Animais não Mamíferos , Fatores Sexuais , Vias Visuais
13.
Cells ; 10(5)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068524

RESUMO

Drosophila melanogaster sbr (small bristles) is an orthologue of the Nxf1 (nuclear export factor 1) genes in different Opisthokonta. The known function of Nxf1 genes is the export of various mRNAs from the nucleus to the cytoplasm. The cytoplasmic localization of the SBR protein indicates that the nuclear export function is not the only function of this gene in Drosophila. RNA-binding protein SBR enriches the nucleus and cytoplasm of specific neurons and glial cells. In sbr12 mutant males, the disturbance of medulla boundaries correlates with the defects of photoreceptor axons pathfinding, axon bundle individualization, and developmental neurodegeneration. RNA-binding protein SBR participates in processes allowing axons to reach and identify their targets.


Assuntos
Proteínas de Drosophila/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Alelos , Animais , Axônios/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Drosophila melanogaster , Feminino , Masculino , Mutação , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fenótipo
14.
J Vis Exp ; (170)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33999033

RESUMO

The Drosophila optic lobe, comprised of four neuropils: the lamina, medulla, lobula and lobula plate, is an excellent model system for exploring the developmental mechanisms that generate neural diversity and drive circuit assembly. Given its complex three-dimensional organization, analysis of the optic lobe requires that one understand how its adult neuropils and larval progenitors are positioned relative to each other and the central brain. Here, we describe a protocol for the dissection, immunostaining and mounting of larval and adult brains for optic lobe imaging. Special emphasis is placed on the relationship between mounting orientation and the spatial organization of the optic lobe. We describe three mounting strategies in the larva (anterior, posterior and lateral) and three in the adult (anterior, posterior and horizontal), each of which provide an ideal imaging angle for a distinct optic lobe structure.


Assuntos
Encéfalo/cirurgia , Lobo Óptico de Animais não Mamíferos/cirurgia , Envelhecimento , Animais , Drosophila melanogaster , Olho , Imuno-Histoquímica , Larva , Procedimentos Cirúrgicos Oftalmológicos
15.
Proc Biol Sci ; 288(1948): 20210216, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33823669

RESUMO

Nervous systems across Animalia not only share a common blueprint at the biophysical and molecular level, but even between diverse groups of animals the structure and neuronal organization of several brain regions are strikingly conserved. Despite variation in the morphology and complexity of eyes across malacostracan crustaceans, many studies have shown that the organization of malacostracan optic lobes is highly conserved. Here, we report results of divergent evolution to this 'neural ground pattern' discovered in hyperiid amphipods, a relatively small group of holopelagic malacostracan crustaceans that possess an unusually wide diversity of compound eyes. We show that the structure and organization of hyperiid optic lobes has not only diverged from the malacostracan ground pattern, but is also highly variable between closely related genera. Our findings demonstrate a variety of trade-offs between sensory systems of hyperiids and even within the visual system alone, thus providing evidence that selection has modified individual components of the central nervous system to generate distinct combinations of visual centres in the hyperiid optic lobes. Our results provide new insights into the patterns of brain evolution among animals that live under extreme conditions.


Assuntos
Anfípodes , Lobo Óptico de Animais não Mamíferos , Animais , Encéfalo , Olho , Neurônios
16.
Arthropod Struct Dev ; 61: 101040, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33706077

RESUMO

A prevailing opinion since 1926 has been that optic lobe organization in malacostracan crustaceans and insects reflects a corresponding organization in their common ancestor. Support for this refers to malacostracans and insects both possessing three, in some instances four, nested retinotopic neuropils beneath their compound eyes. Historically, the rationale for claiming homology of malacostracan and insect optic lobes referred to those commonalities, and to comparable arrangements of neurons. However, recent molecular phylogenetics has firmly established that Malacostraca belong to Multicrustacea, whereas Hexapoda and its related taxa Cephalocarida, Branchiopoda, and Remipedia belong to the phyletically distinct clade Allotriocarida. Insects are more closely related to remipedes than are either to malacostracans. Reconciling neuroanatomy with molecular phylogenies has been complicated by studies showing that the midbrains of remipedes share many attributes with the midbrains of malacostracans. Here we review the organization of the optic lobes in Malacostraca and Insecta to inquire which of their characters correspond genealogically across Pancrustacea and which characters do not. We demonstrate that neuroanatomical characters pertaining to the third optic lobe neuropil, called the lobula complex, may indicate convergent evolution. Distinctions of the malacostracan and insect lobula complexes are sufficient to align neuroanatomical descriptions of the pancrustacean optic lobes within the constraints of molecular-based phylogenies.


Assuntos
Artrópodes , Evolução Biológica , Crustáceos , Insetos , Animais , Crustáceos/anatomia & histologia , Crustáceos/classificação , Neurópilo , Lobo Óptico de Animais não Mamíferos/citologia
17.
Elife ; 102021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33755020

RESUMO

Many insects use patterns of polarized light in the sky to orient and navigate. Here, we functionally characterize neural circuitry in the fruit fly, Drosophila melanogaster, that conveys polarized light signals from the eye to the central complex, a brain region essential for the fly's sense of direction. Neurons tuned to the angle of polarization of ultraviolet light are found throughout the anterior visual pathway, connecting the optic lobes with the central complex via the anterior optic tubercle and bulb, in a homologous organization to the 'sky compass' pathways described in other insects. We detail how a consistent, map-like organization of neural tunings in the peripheral visual system is transformed into a reduced representation suited to flexible processing in the central brain. This study identifies computational motifs of the transformation, enabling mechanistic comparisons of multisensory integration and central processing for navigation in the brains of insects.


Assuntos
Drosophila melanogaster/fisiologia , Raios Ultravioleta , Vias Visuais , Animais , Encéfalo/fisiologia , Feminino , Neurônios , Lobo Óptico de Animais não Mamíferos , Orientação Espacial
18.
Arthropod Struct Dev ; 61: 101012, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33618155

RESUMO

The retinal mosaics of many insects contain different ommatidial subtypes harboring photoreceptors that are both molecularly and morphologically specialized for comparing between different wavelengths versus detecting the orientation of skylight polarization. The neural circuits underlying these different inputs and the characterization of their specific cellular elements are the subject of intense research. Here we review recent progress on the description of both assembly and function of color and skylight polarization circuitry, by focusing on two cell types located in the distal portion of the medulla neuropil of the fruit fly Drosophila melanogaster's optic lobes, called Dm8 and Dm9. In the main part of the retina, Dm8 cells fall into two molecularly distinct subtypes whose center becomes specifically connected to either one of randomly distributed 'pale' or 'yellow' R7 photoreceptor fates during development. Only in the 'dorsal rim area' (DRA), both polarization-sensitive R7 and R8 photoreceptors are connected to different Dm8-like cell types, called Dm-DRA1 and Dm-DRA2, respectively. An additional layer of interommatidial integration is introduced by Dm9 cells, which receive input from multiple neighboring R7 and R8 cells, as well as providing feedback synapses back into these photoreceptors. As a result, the response properties of color-sensitive photoreceptor terminals are sculpted towards being both maximally decorrelated, as well as harboring several levels of opponency (both columnar as well as intercolumnar). In the DRA, individual Dm9 cells appear to mix both polarization and color signals, thereby potentially serving as the first level of integration of different celestial stimuli. The molecular mechanisms underlying the establishment of these synaptic connections are beginning to be revealed, by using a combination of live imaging, developmental genetic studies, and cell type-specific transcriptomics.


Assuntos
Drosophila melanogaster , Células Fotorreceptoras de Invertebrados , Animais , Drosophila melanogaster/fisiologia , Neurônios/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Células Fotorreceptoras de Invertebrados/fisiologia , Sinapses/fisiologia
19.
Nature ; 589(7840): 88-95, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33149298

RESUMO

Deciphering how neuronal diversity is established and maintained requires a detailed knowledge of neuronal gene expression throughout development. In contrast to mammalian brains1,2, the large neuronal diversity of the Drosophila optic lobe3 and its connectome4-6 are almost completely characterized. However, a molecular characterization of this neuronal diversity, particularly during development, has been lacking. Here we present insights into brain development through a nearly complete description of the transcriptomic diversity of the optic lobes of Drosophila. We acquired the transcriptome of 275,000 single cells at adult and at five pupal stages, and built a machine-learning framework to assign them to almost 200 cell types at all time points during development. We discovered two large neuronal populations that wrap neuropils during development but die just before adulthood, as well as neuronal subtypes that partition dorsal and ventral visual circuits by differential Wnt signalling throughout development. Moreover, we show that the transcriptomes of neurons that are of the same type but are produced days apart become synchronized shortly after their production. During synaptogenesis we also resolved neuronal subtypes that, although differing greatly in morphology and connectivity, converge to indistinguishable transcriptomic profiles in adults. Our datasets almost completely account for the known neuronal diversity of the Drosophila optic lobes, and serve as a paradigm to understand brain development across species.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Neurônios/classificação , Neurônios/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Anatomia Artística , Animais , Apoptose , Atlas como Assunto , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Neurônios/citologia , Pupa/citologia , Pupa/crescimento & desenvolvimento , Análise de Célula Única , Sinapses/metabolismo , Transcriptoma/genética , Vias Visuais , Via de Sinalização Wnt
20.
Elife ; 92020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33079061

RESUMO

Neurotransmitter receptors and ion channels shape the biophysical properties of neurons, from the sign of the response mediated by neurotransmitter receptors to the dynamics shaped by voltage-gated ion channels. Therefore, knowing the localizations and types of receptors and channels present in neurons is fundamental to our understanding of neural computation. Here, we developed two approaches to visualize the subcellular localization of specific proteins in Drosophila: The flippase-dependent expression of GFP-tagged receptor subunits in single neurons and 'FlpTag', a versatile new tool for the conditional labelling of endogenous proteins. Using these methods, we investigated the subcellular distribution of the receptors GluClα, Rdl, and Dα7 and the ion channels para and Ih in motion-sensing T4/T5 neurons of the Drosophila visual system. We discovered a strictly segregated subcellular distribution of these proteins and a sequential spatial arrangement of glutamate, acetylcholine, and GABA receptors along the dendrite that matched the previously reported EM-reconstructed synapse distributions.


Assuntos
Canais Iônicos/metabolismo , Percepção de Movimento/fisiologia , Animais , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Lobo Óptico de Animais não Mamíferos/anatomia & histologia , Lobo Óptico de Animais não Mamíferos/metabolismo , Receptores Colinérgicos/metabolismo , Receptores de GABA/metabolismo , Receptores de Glutamato/metabolismo , Células Receptoras Sensoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...